AA6-1 Investigation Graphs of guadratic and cubic functions

Name_____

Review of properties of quadratic functions					
In graphing form: We know "a" controls how the parabola opens (up like a cup or down like a frown). In polynomials we call this end behavior . The start direction and final direction of the graph (up or down).	Graph: $y = -(x+3)^2 + 4$	y = 2 (x - 3) ² - 2			
Rewrite each functions from graphing form to standard form: Note: Does "a" change when you change from graphing to standard form?	$y = - (x+3)^{2} + 4$ y = -1 (x+3)(x+3) + 4 $y = -1 (x^{2} + 6x + 9) + 4$ $y = -x^{2} - 6x - 9 + 4$ $Y = -x^{2} - 6x - 5$	y = 2 (x - 3) ² - 2 y =			
Rewrite each function from standard form to factored form (a box and diamond can help): Note: Does "a" change when you change from standard to factored form?	$Y = -x^{2} - 6x - 5$ y = - (x ² + 6x + 5) y = - (x + 5)(x + 1)	$y = 2x^{2} - 12x + 16$ $y = 2(x^{2} - 6x + 8)$ $y = 2(__)(__)$			
From factored form, we can find the x-intercepts (also called the roots or zeros) of the graph by setting y=0 and using the zero product property.	0 = - (x+5)(x+1) x = x = roots: (, 0) and (, 0)	0 = 2()() x = x = roots: (, 0) and (, 0)			

Look back at the graph of these parabolas. <u>Label the roots</u>.

These are called **simple** or **crossing** roots. Notice the graph crosses right through the x-axis at that point.

Quadratics are one type of polynomial. We have already studied three types of polynomials: linear, quadratic and cubic functions.

In standard form the equations are: y = ax + b $y = ax^2 + bx + c$ $y = ax^3 + bx^2 + cx + d$ (degree 1 polynomial) (degree 2 polynomial) (degree 3 polynomial)

Polynomials are functions in the form: $f(x) = ax^n + bx^{(n-1)} + cx^{(n-2)} + ... + k$ **a,b,c,...** are **coefficients** and can be any real number **n** is the **exponent** and must be a positive integer.

Polynomials can have a combination of root types. Use a calculator and graph the **cubic functions**. (Set the window to D:[-10,10] and R:[-20,20]. Note the y-axis has no values.)

Complete these charts:

Factor		Root	ł	Type
(multiplicity)				(simple,bounce,flat)
(x - 3)	(,)	
$(x + 3)^{even}$	(,)	
× ^{odd}	(,)	

Leading term	End behavior		
(first in standard form)	Start	Final	
ax ^{even}	up	up	
ax ^{odd}			
-ax ^{even}			
-ax ^{odd}			